Show simple item record

contributor authorTarek Hegazy
contributor authorNagib Wassef
date accessioned2017-05-08T20:32:50Z
date available2017-05-08T20:32:50Z
date copyrightJune 2001
date issued2001
identifier other%28asce%290733-9364%282001%29127%3A3%28183%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/19199
description abstractA practical model for scheduling and cost optimization of repetitive projects is proposed in this paper. The model objective is to minimize total construction cost comprising direct cost, indirect cost, interruption cost, as well as incentives and liquidated damages. The novelty of this model stems from four main aspects: (1) it is based on full integration of the critical path and the line of balance methodologies, thus considering crew synchronization and work continuity among nonserial activities; (2) it performs time-cost trade-off analysis considering a specified deadline and alternative construction methods with associated time, cost, and crew options; (3) it is developed as a spreadsheet template that is transparent and easy to use; and (4) it utilizes a nontraditional optimization technique, genetic algorithms, to determine the optimum combination of construction methods, number of crews, and interruptions for each repetitive activity. To automate the model, macroprograms were developed to integrate it with commercial scheduling software. Details of the model are presented, and an example project is used to demonstrate its benefits.
publisherAmerican Society of Civil Engineers
titleCost Optimization in Projects with Repetitive Nonserial Activities
typeJournal Paper
journal volume127
journal issue3
journal titleJournal of Construction Engineering and Management
identifier doi10.1061/(ASCE)0733-9364(2001)127:3(183)
treeJournal of Construction Engineering and Management:;2001:;Volume ( 127 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record