YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-4 of 4

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Closure to “Transitional Markov Chain Monte Carlo: Observations and Improvements” by Wolfgang Betz, Iason Papaioannou, and Daniel Straub 

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 009
    Author(s): Wolfgang Betz; Iason Papaioannou; Daniel Straub
    Publisher: American Society of Civil Engineers
    Request PDF

    Erratum for “Transitional Markov Chain Monte Carlo: Observations and Improvements” by Wolfgang Betz, Iason Papaioannou, and Daniel Straub 

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 009
    Author(s): Wolfgang Betz; Iason Papaioannou; Daniel Straub
    Publisher: American Society of Civil Engineers
    Request PDF

    Transitional Markov Chain Monte Carlo: Observations and Improvements 

    Source: Journal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 005
    Author(s): Wolfgang Betz; Iason Papaioannou; Daniel Straub
    Publisher: American Society of Civil Engineers
    Abstract: The Transitional Markov chain Monte Carlo (TMCMC) method is a widely used method for Bayesian updating and Bayesian model class selection. The method is based on successively sampling from a sequence of distributions that ...
    Request PDF

    Data-Driven Predictive Maintenance for Gas Distribution Networks 

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2022:;Volume ( 008 ):;issue: 002:;page 04022016
    Author(s): Wolfgang Betz; Iason Papaioannou; Tobias Zeh; Dominik Hesping; Tobias Krauss; Daniel Straub
    Publisher: ASCE
    Abstract: A generic data-driven approach is presented that employs machine learning to predict the future reliability of components in utility networks. The proposed approach enables utilities to implement a predictive maintenance ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian