YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Reducing Geometric Uncertainty in Computational Hemodynamics by Deep LearningAssisted ParallelChain MCMC 

    Source: Journal of Biomechanical Engineering:;2022:;volume( 144 ):;issue: 012:;page 121009
    Author(s): Du, Pan;Wang, JianXun
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Computational hemodynamic modeling has been widely used in cardiovascular research and healthcare. However, the reliability of model predictions is largely dependent on the uncertainties of modeling parameters and boundary ...
    Request PDF

    Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multifidelity Approach for Computational Fluid Dynamics Applications 

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2018:;volume( 004 ):;issue:001:;page 11002
    Author(s): Wang, Jian-Xun; Roy, Christopher J.; Xiao, Heng
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle ...
    Request PDF

    Physics-Informed Bayesian Neural Networks for Solving Phonon Boltzmann Transport Equation in Forward and Inverse Problems With Sparse and Noisy Data 

    Source: ASME Journal of Heat and Mass Transfer:;2024:;volume( 147 ):;issue: 003:;page 32501-1
    Author(s): Li, Ruiyang; Zhou, Jiahang; Wang, Jian-Xun; Luo, Tengfei
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nondiffusive phonon transport presents significant challenges in micro/nanoscale thermal characterization, compounded by the limitations of experimental-numerical techniques and the presence of measurement noise. Additionally, ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian