YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-2 of 2

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Stress Resultant–Based Approach to Mass Assumption–Free Bayesian Model Updating of Frame Structures 

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004:;page 04024055-1
    Author(s): Taro Yaoyama; Tatsuya Itoi; Jun Iyama
    Publisher: American Society of Civil Engineers
    Abstract: Bayesian model updating facilitates the calibration of analytical models based on observations and the quantification of uncertainties in model parameters such as stiffness and mass. This process significantly enhances ...
    Request PDF

    Latent Space-Based Likelihood Estimation Using a Single Observation for Bayesian Updating of a Nonlinear Hysteretic Model 

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004:;page 04024072-1
    Author(s): Sangwon Lee; Taro Yaoyama; Yuma Matsumoto; Takenori Hida; Tatsuya Itoi
    Publisher: American Society of Civil Engineers
    Abstract: This study presents a novel approach to quantify uncertainties in Bayesian model updating, which is effective for sparse or single observations. Conventional uncertainty quantification methods are limited in situations ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian