YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products 

    Source: Journal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 003:;page 931
    Author(s): Tao, Yumeng; Gao, Xiaogang; Hsu, Kuolin; Sorooshian, Soroosh; Ihler, Alexander
    Publisher: American Meteorological Society
    Abstract: espite the advantage of global coverage at high spatiotemporal resolutions, satellite remotely sensed precipitation estimates still suffer from insufficient accuracy that needs to be improved for weather, climate, and ...
    Request PDF

    Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches 

    Source: Journal of Hydrometeorology:;2017:;Volume( 018 ):;issue: 005:;page 1271
    Author(s): Tao, Yumeng; Gao, Xiaogang; Ihler, Alexander; Sorooshian, Soroosh; Hsu, Kuolin
    Publisher: American Meteorological Society
    Abstract: n the development of a satellite-based precipitation product, two important aspects are sufficient precipitation information in the satellite-input data and proper methodologies, which are used to extract such information ...
    Request PDF

    A Two-Stage Deep Neural Network Framework for Precipitation Estimation from Bispectral Satellite Information 

    Source: Journal of Hydrometeorology:;2018:;volume 019:;issue 002:;page 393
    Author(s): Tao, Yumeng; Hsu, Kuolin; Ihler, Alexander; Gao, Xiaogang; Sorooshian, Soroosh
    Publisher: American Meteorological Society
    Abstract: AbstractCompared to ground precipitation measurements, satellite-based precipitation estimation products have the advantage of global coverage and high spatiotemporal resolutions. However, the accuracy of satellite-based ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian