YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-10 of 17

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Probability of Convectively Induced Turbulence Associated with Geostationary Satellite–Inferred Cloud-Top Cooling 

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 053 ):;issue: 002:;page 429
    Author(s): Monette, Sarah A.; Sieglaff, Justin M.
    Publisher: American Meteorological Society
    Abstract: he probability of turbulence in the region of identified cloud-top cooling (CTC) from a satellite-based algorithm is calculated. It is found that the overall turbulence probability is low, with only 3.93% of 738 Boeing ...
    Request PDF

    Improving Satellite-Based Convective Cloud Growth Monitoring with Visible Optical Depth Retrievals 

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 053 ):;issue: 002:;page 506
    Author(s): Sieglaff, Justin M.; Cronce, Lee M.; Feltz, Wayne F.
    Publisher: American Meteorological Society
    Abstract: he use of geostationary satellites for monitoring the development of deep convective clouds has been recently well documented. One such approach, the University of Wisconsin Cloud-Top Cooling Rate (CTC) algorithm, utilizes ...
    Request PDF

    Validation of a Large-Scale Simulated Brightness Temperature Dataset Using SEVIRI Satellite Observations 

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 008:;page 1613
    Author(s): Otkin, Jason A.; Greenwald, Thomas J.; Sieglaff, Justin; Huang, Hung-Lung
    Publisher: American Meteorological Society
    Abstract: In this study, the accuracy of a simulated infrared brightness temperature dataset derived from a unique large-scale, high-resolution Weather Research and Forecasting (WRF) Model simulation is evaluated through a comparison ...
    Request PDF

    Evolution of Severe and Nonsevere Convection Inferred from GOES-Derived Cloud Properties 

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 009:;page 2009
    Author(s): Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M.; Heidinger, Andrew K.
    Publisher: American Meteorological Society
    Abstract: eostationary satellites [e.g., the Geostationary Operational Environmental Satellite (GOES)] provide high temporal resolution of cloud development and motion, which is essential to the study of many mesoscale phenomena, ...
    Request PDF

    Inferring Convective Weather Characteristics with Geostationary High Spectral Resolution IR Window Measurements: A Look into the Future 

    Source: Journal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 008:;page 1527
    Author(s): Sieglaff, Justin M.; Schmit, Timothy J.; Menzel, W. Paul; Ackerman, Steven A.
    Publisher: American Meteorological Society
    Abstract: A high spectral resolution geostationary sounder can make spectrally detailed measurements of the infrared spectrum at high temporal resolution, which provides unique information about the lower-tropospheric temperature ...
    Request PDF

    A Satellite-Based Convective Cloud Object Tracking and Multipurpose Data Fusion Tool with Application to Developing Convection 

    Source: Journal of Atmospheric and Oceanic Technology:;2012:;volume( 030 ):;issue: 003:;page 510
    Author(s): Sieglaff, Justin M.; Hartung, Daniel C.; Feltz, Wayne F.; Cronce, Lee M.; Lakshmanan, Valliappa
    Publisher: American Meteorological Society
    Abstract: tudying deep convective clouds requires the use of available observation platforms with high temporal and spatial resolution, as well as other non?remote sensing meteorological data (i.e., numerical weather prediction model ...
    Request PDF

    An Intercomparison of UW Cloud-Top Cooling Rates with WSR-88D Radar Data 

    Source: Weather and Forecasting:;2012:;volume( 028 ):;issue: 002:;page 463
    Author(s): Hartung, Daniel C.; Sieglaff, Justin M.; Cronce, Lee M.; Feltz, Wayne F.
    Publisher: American Meteorological Society
    Abstract: he University of Wisconsin Convective Initiation (UWCI) algorithm utilizes geostationary IR satellite data to compute cloud-top cooling (UW-CTC) rates and assign CI nowcasts to vertically growing clouds. This study is ...
    Request PDF

    An Empirical Model for Assessing the Severe Weather Potential of Developing Convection 

    Source: Weather and Forecasting:;2014:;volume( 029 ):;issue: 003:;page 639
    Author(s): Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M.; Lindsey, Daniel T.
    Publisher: American Meteorological Society
    Abstract: he formation and maintenance of thunderstorms that produce large hail, strong winds, and tornadoes are often difficult to forecast due to their rapid evolution and complex interactions with environmental features that are ...
    Request PDF

    A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images 

    Source: Weather and Forecasting:;2020:;volume( 035 ):;issue: 006:;page 2567
    Author(s): Cintineo, John L.;Pavolonis, Michael J.;Sieglaff, Justin M.;Wimmers, Anthony;Brunner, Jason;Bellon, Willard
    Publisher: American Meteorological Society
    Request PDF

    NOAA ProbSevere v2.0—ProbHail, ProbWind, and ProbTor 

    Source: Weather and Forecasting:;2020:;volume( 035 ):;issue: 004:;page 1523
    Author(s): Cintineo, John L.;Pavolonis, Michael J.;Sieglaff, Justin M.;Cronce, Lee;Brunner, Jason
    Publisher: American Meteorological Society
    Request PDF
    • 1
    • 2
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian