YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Investigation of Microphysical Properties within Regions of Enhanced Dual-Frequency Ratio during the IMPACTS Field Campaign 

    Source: Journal of the Atmospheric Sciences:;2022:;volume( 079 ):;issue: 010:;page 2773
    Author(s): Joseph A. Finlon; Lynn A. McMurdie; Randy J. Chase
    Publisher: American Meteorological Society
    Abstract: Multifrequency airborne radars have become instrumental in evaluating the performance of satellite retrievals and furthering our understanding of ice microphysical properties. The dual-frequency ratio (DFR) is influenced ...
    Request PDF

    Direct Comparisons between GPM-DPR and CloudSat Snowfall Retrievals 

    Source: Journal of Applied Meteorology and Climatology:;2022:;volume( 061 ):;issue: 009:;page 1257
    Author(s): Randy J. Chase; Stephen W. Nesbitt; Greg M. McFarquhar; Norman B. Wood; Gerald M. Heymsfield
    Publisher: American Meteorological Society
    Abstract: Two spaceborne radars currently in orbit enable the sampling of snowfall near the surface and throughout the atmospheric column, namely,
    Request PDF

    A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning 

    Source: Weather and Forecasting:;2022:;volume( 037 ):;issue: 008:;page 1509
    Author(s): Randy J. Chase; David R. Harrison; Amanda Burke; Gary M. Lackmann; Amy McGovern
    Publisher: American Meteorological Society
    Abstract: Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian