YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-7 of 7

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Discussion: “Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement” (Saha, S.K., and Angeles, J., 1991, ASME J. Appl Mech., 58, pp. 238–243) 

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 001:;page 242
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Request PDF

    Closure to “Discussion of ‘On Energy Rate Theorems for Linear First-Order Nonholonomic Systems’” (1992, ASME J. Appl Mech., 59, pp. 241–242) 

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 001:;page 242
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Request PDF

    The Maggi or Canonical Form of Lagrange’s Equations of Motion of Holonomic Mechanical Systems 

    Source: Journal of Applied Mechanics:;1990:;volume( 057 ):;issue: 004:;page 1004
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper formulates the simplest possible, or canonical, form of the Lagrangean-type of equations of motion of holonomically constrained mechanical systems. This is achieved by introducing a ...
    Request PDF

    On the Sufficiency of the Principle of Virtual Work for Mechanical Equilibrium: A Critical Reexamination 

    Source: Journal of Applied Mechanics:;1989:;volume( 056 ):;issue: 003:;page 704
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Starting from the general kinetic principle of d’Alembert/Lagrange, an energetic proof of the sufficiency conditions for equilibrium (known as Principle of Virtual Work) is presented. It is clearly ...
    Request PDF

    On Energy Rate Theorems for Linear First-Order Nonholonomic Systems 

    Source: Journal of Applied Mechanics:;1991:;volume( 058 ):;issue: 002:;page 536
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Starting with the Boltzmann/Hamel equations of motion of mechanical systems subject to general linear and first-order nonholonomic and rheonomic constraints, and in nonholonomic coordinates, this ...
    Request PDF

    On the Transitivity Equations of Rigid-Body Dynamics 

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 004:;page 955
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents direct derivations of the various forms of the famous transitivity equations of rigid-body kinematics from a simple and unified viewpoint. These forms are indispensable in ...
    Request PDF

    A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics 

    Source: Applied Mechanics Reviews:;1998:;volume( 051 ):;issue: 004:;page 239
    Author(s): John G. Papastavridis
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This is a qualitative and concise review of the fundamental principles and equations of Lagrangean, or Analytical, Mechanics (AM) for discrete (or discretizable) and constrained systems; primarily ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian