YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-10 of 13

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Classification of Convective Areas Using Decision Trees 

    Source: Journal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 007:;page 1341
    Author(s): Gagne, David John; McGovern, Amy; Brotzge, Jerry
    Publisher: American Meteorological Society
    Abstract: This paper presents an automated approach for classifying storm type from weather radar reflectivity using decision trees. Recent research indicates a strong relationship between storm type (morphology) and severe weather, ...
    Request PDF

    Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts 

    Source: Weather and Forecasting:;2014:;volume( 029 ):;issue: 004:;page 1024
    Author(s): Gagne, David John; McGovern, Amy; Xue, Ming
    Publisher: American Meteorological Society
    Abstract: robabilistic quantitative precipitation forecasts challenge meteorologists due to the wide variability of precipitation amounts over small areas and their dependence on conditions at multiple spatial and temporal scales. ...
    Request PDF

    Physically Explainable Deep Learning for Convective Initiation Nowcasting Using GOES-16 Satellite Observations 

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 003
    Author(s): Fan, Da; Greybush, Steven J.; Clothiaux, Eugene E.; Gagne, David John
    Publisher: American Meteorological Society
    Request PDF

    Diagnosing Storm Mode with Deep Learning in Convection-Allowing Models 

    Source: Monthly Weather Review:;2023:;volume( 151 ):;issue: 008:;page 2009
    Author(s): Sobash, Ryan A.; Gagne, David John; Becker, Charlie L.; Ahijevych, David; Gantos, Gabrielle N.; Schwartz, Craig S.
    Publisher: American Meteorological Society
    Request PDF

    Tornadic Supercell Environments Analyzed Using Surface and Reanalysis Data: A Spatiotemporal Relational Data-Mining Approach 

    Source: Journal of Applied Meteorology and Climatology:;2012:;volume( 051 ):;issue: 012:;page 2203
    Author(s): Gagne, David John; McGovern, Amy; Basara, Jeffrey B.; Brown, Rodger A.
    Publisher: American Meteorological Society
    Abstract: klahoma Mesonet surface data and North American Regional Reanalysis data were integrated with the tracks of over 900 tornadic and nontornadic supercell thunderstorms in Oklahoma from 1994 to 2003 to observe the evolution ...
    Request PDF

    Solar Energy Prediction: An International Contest to Initiate Interdisciplinary Research on Compelling Meteorological Problems 

    Source: Bulletin of the American Meteorological Society:;2015:;volume( 096 ):;issue: 008:;page 1388
    Author(s): McGovern, Amy; Gagne, David John; Basara, Jeffrey; Hamill, Thomas M.; Margolin, David
    Publisher: American Meteorological Society
    Request PDF

    Generative Ensemble Deep Learning Severe Weather Prediction from a Deterministic Convection-Allowing Model 

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 002
    Author(s): Sha, Yingkai; Sobash, Ryan A.; Gagne, David John
    Publisher: American Meteorological Society
    Request PDF

    Identifying and Categorizing Bias in AI/ML for Earth Sciences 

    Source: Bulletin of the American Meteorological Society:;2024:;volume( 105 ):;issue: 003:;page E567
    Author(s): McGovern, Amy; Bostrom, Ann; McGraw, Marie; Chase, Randy J.; Gagne, David John; Ebert-Uphoff, Imme; Musgrave, Kate D.; Schumacher, Andrea
    Publisher: American Meteorological Society
    Request PDF

    Exploring NWS Forecasters’ Assessment of AI Guidance Trustworthiness 

    Source: Weather and Forecasting:;2024:;volume( 039 ):;issue: 008:;page 1219
    Author(s): Cains, Mariana G.; Wirz, Christopher D.; Demuth, Julie L.; Bostrom, Ann; Gagne, David John; McGovern, Amy; Sobash, Ryan A.; Madlambayan, Deianna
    Publisher: American Meteorological Society
    Request PDF

    Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles 

    Source: Weather and Forecasting:;2017:;volume( 032 ):;issue: 005:;page 1819
    Author(s): Gagne, David John;McGovern, Amy;Haupt, Sue Ellen;Sobash, Ryan A.;Williams, John K.;Xue, Ming
    Publisher: American Meteorological Society
    Abstract: AbstractForecasting severe hail accurately requires predicting how well atmospheric conditions support the development of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching ...
    Request PDF
    • 1
    • 2
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Language (ISO)

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian