YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Energy-Based Error Bound of Physics-Informed Neural Network Solutions in Elasticity 

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 008:;page 04022038
    Author(s): Mengwu Guo; Ehsan Haghighat
    Publisher: ASCE
    Abstract: An energy-based a posteriori error bound is proposed for the physics-informed neural network solutions of elasticity problems. An admissible displacement-stress solution pair is obtained from a mixed form of physics-informed ...
    Request PDF

    Physics-Informed Neural Network Solution of Thermo–Hydro–Mechanical Processes in Porous Media 

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 011:;page 04022070
    Author(s): Danial Amini; Ehsan Haghighat; Ruben Juanes
    Publisher: ASCE
    Abstract: Physics-informed neural networks (PINNs) have received increased interest for forward, inverse, and surrogate modeling of problems described by partial differential equations (PDEs). However, their application to multiphysics ...
    Request PDF

    A Physics-Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity 

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 148 ):;issue: 002:;page 04021154
    Author(s): Mohammad Vahab; Ehsan Haghighat; Maryam Khaleghi; Nasser Khalili
    Publisher: ASCE
    Abstract: We explore an application of the Physics-Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series to find optimal solutions to a few reference biharmonic problems of elasticity and ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian