YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-10 of 17

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Causal Discovery for Climate Research Using Graphical Models 

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 017:;page 5648
    Author(s): Ebert-Uphoff, Imme; Deng, Yi
    Publisher: American Meteorological Society
    Abstract: ausal discovery seeks to recover cause?effect relationships from statistical data using graphical models. One goal of this paper is to provide an accessible introduction to causal discovery methods for climate scientists, ...
    Request PDF

    Evaluation, Tuning and Interpretation of Neural Networks for Working with Images in Meteorological Applications 

    Source: Bulletin of the American Meteorological Society:;2020:;volume( ):;issue: -:;page 1
    Author(s): Ebert-Uphoff, Imme;Hilburn, Kyle
    Publisher: American Meteorological Society
    Abstract: This article discusses strategies for the development of neural networks (aka deep learning) for meteorological applications. Topics include evaluation, tuning and interpretation of neural networks for working with ...
    Request PDF

    Carefully Choose the Baseline: Lessons Learned from Applying XAI Attribution Methods for Regression Tasks in Geoscience 

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 001
    Author(s): Mamalakis, Antonios; Barnes, Elizabeth A.; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Superresolution of GOES-16 ABI Bands to a Common High Resolution with a Convolutional Neural Network 

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 002
    Author(s): White, Charles H.; Ebert-Uphoff, Imme; Haynes, John M.; Noh, Yoo-Jeong
    Publisher: American Meteorological Society
    Request PDF

    Carefully Choose the Baseline: Lessons Learned from Applying XAI Attribution Methods for Regression Tasks in Geoscience 

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 001
    Author(s): Mamalakis, Antonios; Barnes, Elizabeth A.; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Exploring the Use of Machine Learning to Improve Vertical Profiles of Temperature and Moisture 

    Source: Artificial Intelligence for the Earth Systems:;2024:;volume( 003 ):;issue: 001
    Author(s): Haynes, Katherine; Stock, Jason; Dostalek, Jack; Anderson, Charles; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Development and Interpretation of a Neural-Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations 

    Source: Journal of Applied Meteorology and Climatology:;2021:;volume( 060 ):;issue: 001:;page 3
    Author(s): Hilburn, Kyle A.;Ebert-Uphoff, Imme;Miller, Steven D.
    Publisher: American Meteorological Society
    Request PDF

    Using Deep Learning to Nowcast the Spatial Coverage of Convection from Himawari-8 Satellite Data 

    Source: Monthly Weather Review:;2021:;volume( 149 ):;issue: 012:;page 3897
    Author(s): Lagerquist, Ryan;Stewart, Jebb Q.;Ebert-Uphoff, Imme;Kumler, Christina
    Publisher: American Meteorological Society
    Request PDF

    Creating and Evaluating Uncertainty Estimates with Neural Networks for Environmental-Science Applications 

    Source: Artificial Intelligence for the Earth Systems:;2023:;volume( 002 ):;issue: 002
    Author(s): Haynes, Katherine; Lagerquist, Ryan; McGraw, Marie; Musgrave, Kate; Ebert-Uphoff, Imme
    Publisher: American Meteorological Society
    Request PDF

    Estimating Full Longwave and Shortwave Radiative Transfer with Neural Networks of Varying Complexity 

    Source: Journal of Atmospheric and Oceanic Technology:;2023:;volume( 040 ):;issue: 011:;page 1407
    Author(s): Lagerquist, Ryan; Turner, David D.; Ebert-Uphoff, Imme; Stewart, Jebb Q.
    Publisher: American Meteorological Society
    Request PDF
    • 1
    • 2
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Language (ISO)

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian