YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-3 of 3

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Flexural Performance of Polypropylene Fiber Reinforced Scoria Aggregate Concrete Beams after Exposure to Elevated Temperatures 

    Source: Journal of Performance of Constructed Facilities:;2022:;Volume ( 036 ):;issue: 003:;page 04022015
    Author(s): Bin Cai; Ning Lv; Feng Fu
    Publisher: ASCE
    Abstract: To study the residual strength of concrete beams made from a new type of scoria aggregate after being exposed to fire, six concrete beams were tested, including three normal aggregate concrete (NAC) beams and three scoria ...
    Request PDF

    Wind Energy Potential at Elevated Hub Heights in the US Midwest Region 

    Source: Journal of Energy Engineering:;2021:;Volume ( 147 ):;issue: 004:;page 04021023-1
    Author(s): Bin Cai; Phuong Vo; Sri Sritharan; Eugene S. Takle
    Publisher: ASCE
    Abstract: The US Midwest successfully generates wind power at a hub height of 80–90  m and the use of tall towers can reduce the wind energy cost. However, the lack of reliable wind data and production estimates at elevated heights ...
    Request PDF

    Prediction of the Postfire Flexural Capacity of RC Beam Using GA-BPNN Machine Learning 

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 006
    Author(s): Bin Cai; Guo-liang Pan; Feng Fu
    Publisher: ASCE
    Abstract: To accurately predict the flexural capacity of postfire RC beams is imperative for fire safety design. In this paper, the residual flexural capacity of postfire RC beams is predicted based on a back-propagation (BP) neural ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian