YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-4 of 4

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Editorial 

    Source: Artificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 001
    Author(s): Amy McGovern; Anthony J. Broccoli
    Publisher: American Meteorological Society
    Request PDF

    The History and Practice of AI in the Environmental Sciences 

    Source: Bulletin of the American Meteorological Society:;2022:;volume( 103 ):;issue: 005:;page E1351
    Author(s): Sue Ellen Haupt; David John Gagne; William W. Hsieh; Vladimir Krasnopolsky; Amy McGovern; Caren Marzban; William Moninger; Valliappa Lakshmanan; Philippe Tissot; John K. Williams
    Publisher: American Meteorological Society
    Abstract: Artificial intelligence (AI) and machine learning (ML) have become important tools for environmental scientists and engineers, both in research and in applications. Although these methods have become quite popular in recent ...
    Request PDF

    Challenges and Benchmark Datasets for Machine Learning in the Atmospheric Sciences: Definition, Status, and Outlook 

    Source: Artificial Intelligence for the Earth Systems:;2022:;volume( 001 ):;issue: 003
    Author(s): Peter D. Dueben; Martin G. Schultz; Matthew Chantry; David John Gagne; David Matthew Hall; Amy McGovern
    Publisher: American Meteorological Society
    Abstract: Benchmark datasets and benchmark problems have been a key aspect for the success of modern machine learning applications in many scientific domains. Consequently, an active discussion about benchmarks for applications of ...
    Request PDF

    A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning 

    Source: Weather and Forecasting:;2022:;volume( 037 ):;issue: 008:;page 1509
    Author(s): Randy J. Chase; David R. Harrison; Amanda Burke; Gary M. Lackmann; Amy McGovern
    Publisher: American Meteorological Society
    Abstract: Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian