YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology

    Source: Journal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 008::page 081012-1
    Author:
    Zaylor, William
    ,
    Halloran, Jason P.
    DOI: 10.1115/1.4050810
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force–length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.
    • Download: (1.993Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278153
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorZaylor, William
    contributor authorHalloran, Jason P.
    date accessioned2022-02-06T05:29:47Z
    date available2022-02-06T05:29:47Z
    date copyright5/6/2021 12:00:00 AM
    date issued2021
    identifier issn0148-0731
    identifier otherbio_143_08_081012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278153
    description abstractKnee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force–length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology
    typeJournal Paper
    journal volume143
    journal issue8
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4050810
    journal fristpage081012-1
    journal lastpage081012-8
    page8
    treeJournal of Biomechanical Engineering:;2021:;volume( 143 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian