Show simple item record

contributor authorDe Bartolomeis, Andrea
contributor authorNewman, Stephen T.
contributor authorBiermann, Dirk
contributor authorShokrani, Alborz
date accessioned2022-02-05T21:42:12Z
date available2022-02-05T21:42:12Z
date copyright11/11/2020 12:00:00 AM
date issued2020
identifier issn1087-1357
identifier othermanu_143_5_050801.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276170
description abstractInconel 718 is the most used nickel superalloys with applications in aerospace, oil and gas, nuclear, and chemical industries. It is mostly used for safety-critical components where the condition of the surface is a significant concern. The combination of mechanical, thermal, and chemical properties of Inconel 718 has made it a difficult-to-machine material. Despite recent advances in machining Inconel 718, achieving desired surface integrity with prescribed properties is still not possible. Different machining environments have been investigated for improving the machinability of Inconel 718 and enhance the surface integrity of machined components. This paper provides a new investigation and classification into recent advances in the machining of Inconel 718 regarding surface integrity, mostly concentrated on turning applications. The major findings and conclusions provide a critique of the state-of-the-art in machining environments for Inconel 718 together with future directions for research. Surface integrity has been evaluated in terms of surface topology as well as mechanical and microstructural properties. The impact of various cooling and lubrication methods has been investigated. It has been found that surface integrity is affected by the thermomechanical conditions at the cutting zone which are influenced by the cutting parameters, cutting tool, tool wear, and cooling/lubrication condition. The current technologies are incapable of delivering both productivity and sustainability while meeting surface integrity requirements for machining Inconel 718. High-pressure cooling has shown the potential to enhance tool wear at the expense of higher power consumption.
publisherThe American Society of Mechanical Engineers (ASME)
titleState-of-The-Art Cooling and Lubrication for Machining Inconel 718
typeJournal Paper
journal volume143
journal issue5
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.4047842
journal fristpage050801-1
journal lastpage050801-19
page19
treeJournal of Manufacturing Science and Engineering:;2020:;volume( 143 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record