Precipitation and Mesoscale Convective Systems: Explicit versus Parameterized Convection over Northern AfricaSource: Monthly Weather Review:;2018:;volume 146:;issue 003::page 797DOI: 10.1175/MWR-D-17-0202.1Publisher: American Meteorological Society
Abstract: AbstractPrecipitating systems are analyzed during a dust event from 9 to 14 June 2006 over northern Africa. A common analysis is applied to satellite observations and two Meso-NH simulations: one convection permitting (grid spacing x = 2.5 km) and the other with parameterized convection (x = 20 km). The precipitating systems are identified as cloud objects and classified as deep convective clouds (DCCs) or other clouds according to their infrared signature. Large DCCs [hereafter named mesoscale convective systems (MCSs)] are tracked, characterized in terms of precipitation and thermodynamic profiles, and analyzed in southern West Africa (SWA), central Africa, and Ethiopia. Precipitation is mostly observed along 0°?15°N, with 71% of the total precipitation produced by all DCCs and 55% by long-lived MCSs. It shows a marked diurnal cycle with a peak in the evening, mainly due to long-lived MCSs, which are characterized by an increase in size, zonal speed, and duration from east to west, with the largest, fastest, and longest-lived ones found over SWA. This is due to an enhanced African easterly jet (AEJ) and monsoon flow leading to stronger shear and greater conditional instability. The simulation with parameterized convection fails to distribute precipitation correctly. The convection-permitting simulation captures most of the observed precipitation features, but lacks the increase in organization of the long-lived MCSs over SWA. Excess moisture in a too zonal AEJ flow suggests that the long-lived MCSs in SWA are poorly located with respect to African easterly waves. The convection-permitting model improves the representation of precipitation but without fully resolving the long-lived MCSs.
|
Collections
Show full item record
contributor author | Reinares Martínez, Irene | |
contributor author | Chaboureau, Jean-Pierre | |
date accessioned | 2019-09-19T10:04:14Z | |
date available | 2019-09-19T10:04:14Z | |
date copyright | 1/30/2018 12:00:00 AM | |
date issued | 2018 | |
identifier other | mwr-d-17-0202.1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4261195 | |
description abstract | AbstractPrecipitating systems are analyzed during a dust event from 9 to 14 June 2006 over northern Africa. A common analysis is applied to satellite observations and two Meso-NH simulations: one convection permitting (grid spacing x = 2.5 km) and the other with parameterized convection (x = 20 km). The precipitating systems are identified as cloud objects and classified as deep convective clouds (DCCs) or other clouds according to their infrared signature. Large DCCs [hereafter named mesoscale convective systems (MCSs)] are tracked, characterized in terms of precipitation and thermodynamic profiles, and analyzed in southern West Africa (SWA), central Africa, and Ethiopia. Precipitation is mostly observed along 0°?15°N, with 71% of the total precipitation produced by all DCCs and 55% by long-lived MCSs. It shows a marked diurnal cycle with a peak in the evening, mainly due to long-lived MCSs, which are characterized by an increase in size, zonal speed, and duration from east to west, with the largest, fastest, and longest-lived ones found over SWA. This is due to an enhanced African easterly jet (AEJ) and monsoon flow leading to stronger shear and greater conditional instability. The simulation with parameterized convection fails to distribute precipitation correctly. The convection-permitting simulation captures most of the observed precipitation features, but lacks the increase in organization of the long-lived MCSs over SWA. Excess moisture in a too zonal AEJ flow suggests that the long-lived MCSs in SWA are poorly located with respect to African easterly waves. The convection-permitting model improves the representation of precipitation but without fully resolving the long-lived MCSs. | |
publisher | American Meteorological Society | |
title | Precipitation and Mesoscale Convective Systems: Explicit versus Parameterized Convection over Northern Africa | |
type | Journal Paper | |
journal volume | 146 | |
journal issue | 3 | |
journal title | Monthly Weather Review | |
identifier doi | 10.1175/MWR-D-17-0202.1 | |
journal fristpage | 797 | |
journal lastpage | 812 | |
tree | Monthly Weather Review:;2018:;volume 146:;issue 003 | |
contenttype | Fulltext |