YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensing Mechanism and Real-Time Computing for Granular Materials

    Source: Journal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 004
    Author:
    Liu Shushu;Huang Hai;Qiu Tong;Shen Shihui
    DOI: 10.1061/(ASCE)CP.1943-5487.0000769
    Publisher: American Society of Civil Engineers
    Abstract: The discrete element method (DEM) has been widely used to study the mechanical behavior of granular materials. However, potential error accumulation over the required large number of time steps due to the explicit time integration in DEM simulations may undermine the simulation accuracy. In this paper, a computing scheme based on real-time data fusion between a sensing mechanism and traditional DEM is developed and investigated. The developed sensing mechanism and real-time (SMART) computing consists of: (1) real-time data acquisition of particle kinematics through a wireless instrumentation called SmartRocks that are embedded at discrete locations in a granular assemblage, and (2) a built-in data-fusion-based algorithm using the Kalman filter to integrate the prediction generated by DEM and the measurements reported by SmartRocks. The performance of the SMART computing algorithm is investigated by simulating a series of ball collision experiments consisting of two-ball center-to-center, two-ball off-center, and multiball collisions. It is concluded that SMART computing can improve the accuracy of DEM simulations. The results of this study suggest that the location and number of SmartRocks, whose recordings are fused into DEM simulations to recondition the particle movements, are important to the accuracy of SMART computing.
    • Download: (2.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensing Mechanism and Real-Time Computing for Granular Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4248630
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorLiu Shushu;Huang Hai;Qiu Tong;Shen Shihui
    date accessioned2019-02-26T07:40:24Z
    date available2019-02-26T07:40:24Z
    date issued2018
    identifier other%28ASCE%29CP.1943-5487.0000769.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4248630
    description abstractThe discrete element method (DEM) has been widely used to study the mechanical behavior of granular materials. However, potential error accumulation over the required large number of time steps due to the explicit time integration in DEM simulations may undermine the simulation accuracy. In this paper, a computing scheme based on real-time data fusion between a sensing mechanism and traditional DEM is developed and investigated. The developed sensing mechanism and real-time (SMART) computing consists of: (1) real-time data acquisition of particle kinematics through a wireless instrumentation called SmartRocks that are embedded at discrete locations in a granular assemblage, and (2) a built-in data-fusion-based algorithm using the Kalman filter to integrate the prediction generated by DEM and the measurements reported by SmartRocks. The performance of the SMART computing algorithm is investigated by simulating a series of ball collision experiments consisting of two-ball center-to-center, two-ball off-center, and multiball collisions. It is concluded that SMART computing can improve the accuracy of DEM simulations. The results of this study suggest that the location and number of SmartRocks, whose recordings are fused into DEM simulations to recondition the particle movements, are important to the accuracy of SMART computing.
    publisherAmerican Society of Civil Engineers
    titleSensing Mechanism and Real-Time Computing for Granular Materials
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000769
    page4018023
    treeJournal of Computing in Civil Engineering:;2018:;Volume ( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian