YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterizing Compact and Extensible Compressor Models Using Orthogonal Distance Minimization

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 001::page 12601
    Author:
    Llamas, Xavier
    ,
    Eriksson, Lars
    DOI: 10.1115/1.4034152
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A complete and compact control-oriented compressor model consisting of a mass flow submodel and an efficiency submodel is described. The final application of the model is a complete two-stroke mean value engine model (MVEM) which requires simulating the compressor operating at the low-flow and low-pressure ratio area. The model is based on previous research done for automotive-size compressors, and it is shown to be general enough to adapt well to the characteristics of the marine-size compressors. A physics-based efficiency model allows, together with the mass flow model, extrapolating to low-pressure ratios. The complexity of the model makes its parameterization a difficult task; hence, a method to efficiently estimate the 19 model parameters is proposed. The method computes analytic model gradients and uses them to minimize the orthogonal distances between the modeled speed lines (SpLs) and the measured points. The results of the parameter estimation are tested against nine different standard marine-size maps showing good agreement with the measured data. Furthermore, the results also show the importance of estimating the parameters of the mass flow and efficiency submodels at the same time to obtain an accurate model. The extrapolation capabilities to low-load regions are also tested using low-load measurements from an automotive-size compressor. It is shown that the model follows the measured efficiency trend down to low loads.
    • Download: (2.227Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterizing Compact and Extensible Compressor Models Using Orthogonal Distance Minimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237029
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLlamas, Xavier
    contributor authorEriksson, Lars
    date accessioned2017-11-25T07:21:22Z
    date available2017-11-25T07:21:22Z
    date copyright2016/16/8
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_01_012601.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237029
    description abstractA complete and compact control-oriented compressor model consisting of a mass flow submodel and an efficiency submodel is described. The final application of the model is a complete two-stroke mean value engine model (MVEM) which requires simulating the compressor operating at the low-flow and low-pressure ratio area. The model is based on previous research done for automotive-size compressors, and it is shown to be general enough to adapt well to the characteristics of the marine-size compressors. A physics-based efficiency model allows, together with the mass flow model, extrapolating to low-pressure ratios. The complexity of the model makes its parameterization a difficult task; hence, a method to efficiently estimate the 19 model parameters is proposed. The method computes analytic model gradients and uses them to minimize the orthogonal distances between the modeled speed lines (SpLs) and the measured points. The results of the parameter estimation are tested against nine different standard marine-size maps showing good agreement with the measured data. Furthermore, the results also show the importance of estimating the parameters of the mass flow and efficiency submodels at the same time to obtain an accurate model. The extrapolation capabilities to low-load regions are also tested using low-load measurements from an automotive-size compressor. It is shown that the model follows the measured efficiency trend down to low loads.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameterizing Compact and Extensible Compressor Models Using Orthogonal Distance Minimization
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034152
    journal fristpage12601
    journal lastpage012601-10
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian