YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rotordynamic Performance of a Shaft With Large Overhung Mass Supported by Foil Bearings

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004::page 42506
    Author:
    LaTray, Nguyen
    ,
    Kim, Daejong
    DOI: 10.1115/1.4034918
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.
    • Download: (2.445Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rotordynamic Performance of a Shaft With Large Overhung Mass Supported by Foil Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233672
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLaTray, Nguyen
    contributor authorKim, Daejong
    date accessioned2017-11-25T07:15:47Z
    date available2017-11-25T07:15:47Z
    date copyright2016/16/11
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_04_042506.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233672
    description abstractThis work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRotordynamic Performance of a Shaft With Large Overhung Mass Supported by Foil Bearings
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034918
    journal fristpage42506
    journal lastpage042506-9
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian