YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing Temporal Aliasing in Satellite-Based Surface Salinity Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2012:;volume( 029 ):;issue: 009::page 1391
    Author:
    Vinogradova, Nadya T.
    ,
    Ponte, Rui M.
    DOI: 10.1175/JTECH-D-11-00055.1
    Publisher: American Meteorological Society
    Abstract: he Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) salinity remote sensing mission is intended to provide global mapping of sea surface salinity (SSS) fields over the next few years. Temporal and spatial averages of the satellite salinity retrievals produce monthly mean fields on 1° grids with target accuracies of 0.2 psu. One issue of relevance for the satellite-derived products is the potential for temporal aliasing of rapid fluctuations into the climate (monthly averaged) values of interest. Global daily SSS fields from a data-assimilating, eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) solution are used to evaluate whether the potential aliasing error is large enough to affect the accuracy of the SSS retrievals. For comparison, salinity data collected at a few in situ stations over the tropical oceans are also used. Based on the HYCOM daily series, over many oceanic regions, a significant part of the total salinity variability is contributed by rapid fluctuations at periods aliased in the satellite retrievals. Estimates of the implicit aliasing error in monthly mean salinity estimates amount to 0.02 psu on average and >0.1 psu in some coastal, tropical, western boundary current, and Arctic regions. Comparison with in situ measurements suggests that HYCOM can underestimate the effect at some locations. While local aliased variance can be significant, the estimated impact of aliasing noise on the overall Aquarius system noise is negligible on average, when combined with effects of other instrument and geophysical errors. Effects of aliased variance are strongest at the shortest periods (<6 months) and become negligible at the annual period.
    • Download: (2.660Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing Temporal Aliasing in Satellite-Based Surface Salinity Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227905
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorVinogradova, Nadya T.
    contributor authorPonte, Rui M.
    date accessioned2017-06-09T17:24:01Z
    date available2017-06-09T17:24:01Z
    date copyright2012/09/01
    date issued2012
    identifier issn0739-0572
    identifier otherams-84556.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227905
    description abstracthe Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) salinity remote sensing mission is intended to provide global mapping of sea surface salinity (SSS) fields over the next few years. Temporal and spatial averages of the satellite salinity retrievals produce monthly mean fields on 1° grids with target accuracies of 0.2 psu. One issue of relevance for the satellite-derived products is the potential for temporal aliasing of rapid fluctuations into the climate (monthly averaged) values of interest. Global daily SSS fields from a data-assimilating, eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) solution are used to evaluate whether the potential aliasing error is large enough to affect the accuracy of the SSS retrievals. For comparison, salinity data collected at a few in situ stations over the tropical oceans are also used. Based on the HYCOM daily series, over many oceanic regions, a significant part of the total salinity variability is contributed by rapid fluctuations at periods aliased in the satellite retrievals. Estimates of the implicit aliasing error in monthly mean salinity estimates amount to 0.02 psu on average and >0.1 psu in some coastal, tropical, western boundary current, and Arctic regions. Comparison with in situ measurements suggests that HYCOM can underestimate the effect at some locations. While local aliased variance can be significant, the estimated impact of aliasing noise on the overall Aquarius system noise is negligible on average, when combined with effects of other instrument and geophysical errors. Effects of aliased variance are strongest at the shortest periods (<6 months) and become negligible at the annual period.
    publisherAmerican Meteorological Society
    titleAssessing Temporal Aliasing in Satellite-Based Surface Salinity Measurements
    typeJournal Paper
    journal volume29
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-11-00055.1
    journal fristpage1391
    journal lastpage1400
    treeJournal of Atmospheric and Oceanic Technology:;2012:;volume( 029 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian