YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003::page 371
    Author:
    Rigon, Riccardo
    ,
    Bertoldi, Giacomo
    ,
    Over, Thomas M.
    DOI: 10.1175/JHM497.1
    Publisher: American Meteorological Society
    Abstract: This paper describes a new distributed hydrological model, called GEOtop. The model accommodates very complex topography and, besides the water balance, unlike most other hydrological models, integrates all the terms in the surface energy balance equation. GEOtop uses a discretization of the landscape based on digital elevation data. These digital elevation data are preprocessed to allow modeling of the effect of topography on the radiation incident on the surface, both shortwave (including shadowing) and longwave (accounting for the sky view factor). For saturated and unsaturated subsurface flow, GEOtop makes use of a numerical solution of the 3D Richards? equation in order to properly model, besides the lateral flow, the vertical structure of water content and the suction dynamics. These characteristics are deemed necessary for consistently modeling hillslope processes, initiation of landslides, snowmelt processes, and ecohydrological phenomena as well as discharges during floods and interstorm periods. An accurate treatment of radiation inputs is implemented in order to be able to return surface temperature. The motivation behind the model is to combine the strengths and overcome the weaknesses of flood forecasting and land surface models. The former often include detailed spatial description and lateral fluxes but usually lack appropriate knowledge of the vertical ones. The latter are focused on vertical structure and usually lack spatial structure and prediction of lateral fluxes. Outlines of the processes simulated and the methods used to simulate them are given. A series of applications of the model to the Little Washita basin of Oklahoma using data from the Southern Great Plains 1997 Hydrology Experiment (SGP97) is presented. These show the model?s ability to reproduce the pointwise energy and water balance, showing that just an elementary calibration of a few parameters is needed for an acceptable reproduction of discharge at the outlet, for the prediction of the spatial distribution of soil moisture content, and for the simulation of a full year?s streamflow without additional calibration.
    • Download: (1.567Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224514
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorRigon, Riccardo
    contributor authorBertoldi, Giacomo
    contributor authorOver, Thomas M.
    date accessioned2017-06-09T17:13:56Z
    date available2017-06-09T17:13:56Z
    date copyright2006/06/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81503.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224514
    description abstractThis paper describes a new distributed hydrological model, called GEOtop. The model accommodates very complex topography and, besides the water balance, unlike most other hydrological models, integrates all the terms in the surface energy balance equation. GEOtop uses a discretization of the landscape based on digital elevation data. These digital elevation data are preprocessed to allow modeling of the effect of topography on the radiation incident on the surface, both shortwave (including shadowing) and longwave (accounting for the sky view factor). For saturated and unsaturated subsurface flow, GEOtop makes use of a numerical solution of the 3D Richards? equation in order to properly model, besides the lateral flow, the vertical structure of water content and the suction dynamics. These characteristics are deemed necessary for consistently modeling hillslope processes, initiation of landslides, snowmelt processes, and ecohydrological phenomena as well as discharges during floods and interstorm periods. An accurate treatment of radiation inputs is implemented in order to be able to return surface temperature. The motivation behind the model is to combine the strengths and overcome the weaknesses of flood forecasting and land surface models. The former often include detailed spatial description and lateral fluxes but usually lack appropriate knowledge of the vertical ones. The latter are focused on vertical structure and usually lack spatial structure and prediction of lateral fluxes. Outlines of the processes simulated and the methods used to simulate them are given. A series of applications of the model to the Little Washita basin of Oklahoma using data from the Southern Great Plains 1997 Hydrology Experiment (SGP97) is presented. These show the model?s ability to reproduce the pointwise energy and water balance, showing that just an elementary calibration of a few parameters is needed for an acceptable reproduction of discharge at the outlet, for the prediction of the spatial distribution of soil moisture content, and for the simulation of a full year?s streamflow without additional calibration.
    publisherAmerican Meteorological Society
    titleGEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM497.1
    journal fristpage371
    journal lastpage388
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian