YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of Antecedent Land Surface Conditions in Warm Season Precipitation over Northwestern Mexico

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 009::page 1774
    Author:
    Zhu, Chunmei
    ,
    Cavazos, Tereza
    ,
    Lettenmaier, Dennis P.
    DOI: 10.1175/JCLI4085.1
    Publisher: American Meteorological Society
    Abstract: The role of antecedent land surface conditions including precipitation (P), surface skin temperature (Ts), soil moisture (Sm), and snow water equivalent (SWE) anomalies on the onset and intensity of the monsoon during the 1950?99 period in the core of the North American monsoon system (NAMS) region in northwestern Mexico (termed MSa here) is explored. A statistically significant positive relationship is found between monsoon onset date in MSa and previous winter precipitation in the southwestern United States (SW) and northwestern (NW) Mexico, and winter SWE in the southern Rocky Mountains. The linkages are strong during the 1960s?80s and weak otherwise, which is a much shorter period than had been found previously for an SW target area termed monsoon west (MW). In the MW study, the following land surface feedback hypothesis was proposed: more winter P and SWE lead to more spring Sm, hence lower spring and early summer Ts, which induce a weaker onset of the NAMS. This hypothesis broke down in MW due to the small contribution of land surface memory to surface thermal condition, and hence to monsoon strength. The same hypothesis is in this work for MSa by examining three links. First, it is found that in May not only the total column, but also the near-surface Sm, in both SW and NW Mexico have memory from the previous winter precipitation. The spring Sm anomalies correlate negatively with Ts anomalies over most of the continental United States and Mexico except for the desert region of SW and NW Mexico. The monsoon onset is negatively correlated with May Ts over an area roughly consisting of New Mexico and some adjacent areas, suggesting that antecedent land surface conditions may influence the premonsoon surface thermal condition, which then affects monsoon onset. The monsoon-driving force concept that states that the strength of the monsoon should be related to premonsoon land?sea surface temperature contrasts is also confirmed. The confirmation of this concept shows that late monsoon years are associated with colder land and warmer adjacent ocean than early monsoon years. In addition to the apparent land surface feedback, a strong positive relationship between May Ts anomalies and the large-scale midtropospheric circulation (Z500) anomalies is found, which suggests that large-scale circulation may play a strong (possibly more important than land feedback) role in modulating the monsoon onset.
    • Download: (2.807Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of Antecedent Land Surface Conditions in Warm Season Precipitation over Northwestern Mexico

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221229
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhu, Chunmei
    contributor authorCavazos, Tereza
    contributor authorLettenmaier, Dennis P.
    date accessioned2017-06-09T17:02:59Z
    date available2017-06-09T17:02:59Z
    date copyright2007/05/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-78548.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221229
    description abstractThe role of antecedent land surface conditions including precipitation (P), surface skin temperature (Ts), soil moisture (Sm), and snow water equivalent (SWE) anomalies on the onset and intensity of the monsoon during the 1950?99 period in the core of the North American monsoon system (NAMS) region in northwestern Mexico (termed MSa here) is explored. A statistically significant positive relationship is found between monsoon onset date in MSa and previous winter precipitation in the southwestern United States (SW) and northwestern (NW) Mexico, and winter SWE in the southern Rocky Mountains. The linkages are strong during the 1960s?80s and weak otherwise, which is a much shorter period than had been found previously for an SW target area termed monsoon west (MW). In the MW study, the following land surface feedback hypothesis was proposed: more winter P and SWE lead to more spring Sm, hence lower spring and early summer Ts, which induce a weaker onset of the NAMS. This hypothesis broke down in MW due to the small contribution of land surface memory to surface thermal condition, and hence to monsoon strength. The same hypothesis is in this work for MSa by examining three links. First, it is found that in May not only the total column, but also the near-surface Sm, in both SW and NW Mexico have memory from the previous winter precipitation. The spring Sm anomalies correlate negatively with Ts anomalies over most of the continental United States and Mexico except for the desert region of SW and NW Mexico. The monsoon onset is negatively correlated with May Ts over an area roughly consisting of New Mexico and some adjacent areas, suggesting that antecedent land surface conditions may influence the premonsoon surface thermal condition, which then affects monsoon onset. The monsoon-driving force concept that states that the strength of the monsoon should be related to premonsoon land?sea surface temperature contrasts is also confirmed. The confirmation of this concept shows that late monsoon years are associated with colder land and warmer adjacent ocean than early monsoon years. In addition to the apparent land surface feedback, a strong positive relationship between May Ts anomalies and the large-scale midtropospheric circulation (Z500) anomalies is found, which suggests that large-scale circulation may play a strong (possibly more important than land feedback) role in modulating the monsoon onset.
    publisherAmerican Meteorological Society
    titleRole of Antecedent Land Surface Conditions in Warm Season Precipitation over Northwestern Mexico
    typeJournal Paper
    journal volume20
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/JCLI4085.1
    journal fristpage1774
    journal lastpage1791
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian