YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Smooth Cloud Model

    Source: Monthly Weather Review:;2009:;volume( 137 ):;issue: 006::page 1825
    Author:
    Reisner, J. M.
    ,
    Jeffery, C. A.
    DOI: 10.1175/2008MWR2576.1
    Publisher: American Meteorological Society
    Abstract: In this paper a large-eddy ?smooth? cloud (SC) model will be presented with smooth implying that the entire model converges under a Newton-based solution procedure or that time scales within the SC model are being resolved. Besides ensuring that time scales within microphysical parameterizations are resolved, convergence of Newton?s method requires that advection schemes near cloud boundaries should not induce fast time scales. For example, flux-corrected transport (FCT) schemes that force cloud variables to stay oscillation free near boundaries are typically not differentiable in time and hence may prevent convergence of Newton?s method. To circumvent the use of a FCT scheme, an alternative approach, a cloud-edge (CE) diffusion-based approach, will be presented in this paper. Since the diffusion produced by the CE approach could conceivably lead to the fictitious evaporation of a real cloud, the first major point of this paper will be to document that the SC model when employing an evaporative limiter is able, like most traditional large-eddy cloud models, to reasonably reproduce nondrizzling stratus clouds observed during flight 1 of the Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II). However, the SC model obtains the accuracy offered by higher-order time-stepping approaches, unlike most traditional cloud models. In fact, temporal errors from the SC model are shown to be at least two orders of magnitude smaller than those of a traditional large-eddy cloud model. Hence, the second major point of this paper will be to demonstrate the consequence of these large temporal errors found in traditional large-eddy cloud models, that is, the inability to accurately track an identifiable cloud feature in time.
    • Download: (4.603Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Smooth Cloud Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209438
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorReisner, J. M.
    contributor authorJeffery, C. A.
    date accessioned2017-06-09T16:26:31Z
    date available2017-06-09T16:26:31Z
    date copyright2009/06/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-67936.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209438
    description abstractIn this paper a large-eddy ?smooth? cloud (SC) model will be presented with smooth implying that the entire model converges under a Newton-based solution procedure or that time scales within the SC model are being resolved. Besides ensuring that time scales within microphysical parameterizations are resolved, convergence of Newton?s method requires that advection schemes near cloud boundaries should not induce fast time scales. For example, flux-corrected transport (FCT) schemes that force cloud variables to stay oscillation free near boundaries are typically not differentiable in time and hence may prevent convergence of Newton?s method. To circumvent the use of a FCT scheme, an alternative approach, a cloud-edge (CE) diffusion-based approach, will be presented in this paper. Since the diffusion produced by the CE approach could conceivably lead to the fictitious evaporation of a real cloud, the first major point of this paper will be to document that the SC model when employing an evaporative limiter is able, like most traditional large-eddy cloud models, to reasonably reproduce nondrizzling stratus clouds observed during flight 1 of the Second Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II). However, the SC model obtains the accuracy offered by higher-order time-stepping approaches, unlike most traditional cloud models. In fact, temporal errors from the SC model are shown to be at least two orders of magnitude smaller than those of a traditional large-eddy cloud model. Hence, the second major point of this paper will be to demonstrate the consequence of these large temporal errors found in traditional large-eddy cloud models, that is, the inability to accurately track an identifiable cloud feature in time.
    publisherAmerican Meteorological Society
    titleA Smooth Cloud Model
    typeJournal Paper
    journal volume137
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/2008MWR2576.1
    journal fristpage1825
    journal lastpage1843
    treeMonthly Weather Review:;2009:;volume( 137 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian