YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forced Convection Cooling of Low Power Handheld Devices Using a Vibrating Cantilever Beam

    Source: Journal of Thermal Science and Engineering Applications:;2015:;volume( 007 ):;issue: 002::page 21010
    Author:
    Kim, Jangwoo
    ,
    Ro, Paul I.
    DOI: 10.1115/1.4029677
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, a convection cooling technique for handheld electronic devices is proposed and investigated. The technique uses bulk airflows generated by a vibrating cantilever beam actuated by a rotating imbalance motor. Analytic coupled physics modeling using an approximate integral method within laminarflow boundary layers was used to analyze the proposed cooling technique. The cantilever beam and enclosure were designed based on the form factors of a typical handheld device. The bulk airflow cooling performances at various probe locations were investigated experimentally for low and high heating loads and numerically verified. The results indicate that a higher heating load of the heat source results in a larger temperature drop at the same convection rate. Also, for the probe locations away from the heat source and closer to the beam, the resulting temperature drops were relatively small despite a stronger velocity field generated by the beam. This is due first to the heat generated by the vibrating beam itself and second to a circulation of the air heated by the heat source to the rest of the regions in the enclosure. In general, a good agreement between experimental and numerical results was attained, even though a slight difference between two results exists. Overall, significant cooling was achieved by the proposed system. With a beam tip deflection of آ±4 mm, nearly an 18fold increase in the cooling performance was achieved compared to a natural convection case. Furthermore, the cooling performance continues to increase as the tip deflection of the cantilever beam increases. Thus, a cooling system using the bulk airflow generated by a vibrating cantilever beam has much potential as a feasible solution for electronic handheld devices.
    • Download: (2.487Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forced Convection Cooling of Low Power Handheld Devices Using a Vibrating Cantilever Beam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159710
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorKim, Jangwoo
    contributor authorRo, Paul I.
    date accessioned2017-05-09T01:23:47Z
    date available2017-05-09T01:23:47Z
    date issued2015
    identifier issn1948-5085
    identifier othertsea_007_02_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159710
    description abstractIn this study, a convection cooling technique for handheld electronic devices is proposed and investigated. The technique uses bulk airflows generated by a vibrating cantilever beam actuated by a rotating imbalance motor. Analytic coupled physics modeling using an approximate integral method within laminarflow boundary layers was used to analyze the proposed cooling technique. The cantilever beam and enclosure were designed based on the form factors of a typical handheld device. The bulk airflow cooling performances at various probe locations were investigated experimentally for low and high heating loads and numerically verified. The results indicate that a higher heating load of the heat source results in a larger temperature drop at the same convection rate. Also, for the probe locations away from the heat source and closer to the beam, the resulting temperature drops were relatively small despite a stronger velocity field generated by the beam. This is due first to the heat generated by the vibrating beam itself and second to a circulation of the air heated by the heat source to the rest of the regions in the enclosure. In general, a good agreement between experimental and numerical results was attained, even though a slight difference between two results exists. Overall, significant cooling was achieved by the proposed system. With a beam tip deflection of آ±4 mm, nearly an 18fold increase in the cooling performance was achieved compared to a natural convection case. Furthermore, the cooling performance continues to increase as the tip deflection of the cantilever beam increases. Thus, a cooling system using the bulk airflow generated by a vibrating cantilever beam has much potential as a feasible solution for electronic handheld devices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleForced Convection Cooling of Low Power Handheld Devices Using a Vibrating Cantilever Beam
    typeJournal Paper
    journal volume7
    journal issue2
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4029677
    journal fristpage21010
    journal lastpage21010
    identifier eissn1948-5093
    treeJournal of Thermal Science and Engineering Applications:;2015:;volume( 007 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian