YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Endothelial Nitric Oxide Synthase and Calcium Production in Arterial Geometries: An Integrated Fluid Mechanics/Cell Model

    Source: Journal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 001::page 11010
    Author:
    A. Comerford
    ,
    M. J. Plank
    ,
    T. David
    DOI: 10.1115/1.2838026
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It is well known that atherosclerosis occurs at very specific locations throughout the human vasculature, such as arterial bifurcations and bends, all of which are subjected to low wall shear stress. A key player in the pathology of atherosclerosis is the endothelium, controlling the passage of material to and from the artery wall. Endothelial dysfunction refers to the condition where the normal regulation of processes by the endothelium is diminished. In this paper, the blood flow and transport of the low diffusion coefficient species adenosine triphosphate (ATP) are investigated in a variety of arterial geometries: a bifurcation with varying inner angle, and an artery bend. A mathematical model of endothelial calcium and endothelial nitric oxide synthase cellular dynamics is used to investigate spatial variations in the physiology of the endothelium. This model allows assessment of regions of the artery wall deficient in nitric oxide (NO). The models here aim to determine whether 3D flow fields are important in determining ATP concentration and endothelial function. For ATP transport, the effects of a coronary and carotid wave form on mass transport is investigated for low Womersley number. For the carotid, the Womersley number is then increased to determine whether this is an important factor. The results show that regions of low wall shear stress correspond with regions of impaired endothetial nitric oxide synthase signaling, therefore reduced availability of NO. However, experimental work is required to determine if this level is significant. The results also suggest that bifurcation angle is an important factor and acute angle bifurcations are more susceptible to disease than large angle bifurcations. It has been evidenced that complex 3D flow fields play an important role in determining signaling within endothelial cells. Furthermore, the distribution of ATP in blood is highly dependent on secondary flow features. The models here use ATP concentration simulated under steady conditions. This has been evidenced to reproduce essential features of time-averaged ATP concentration over a cardiac cycle for small Womersley numbers. However, when the Womersley number is increased, some differences are observed. Transient variations are overall insignificant, suggesting that spatial variation is more important than temporal. It has been determined that acute angle bifurcations are potentially more susceptible to atherogenesis and steady-state ATP transport reproduces essential features of time-averaged pulsatile transport for small Womersley number. Larger Womersley numbers appear to be an important factor in time-dependent mass transfer.
    keyword(s): Flow (Dynamics) , Bifurcation , Exterior walls , Endothelial cells AND Shear (Mechanics) ,
    • Download: (740.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Endothelial Nitric Oxide Synthase and Calcium Production in Arterial Geometries: An Integrated Fluid Mechanics/Cell Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/137514
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorA. Comerford
    contributor authorM. J. Plank
    contributor authorT. David
    date accessioned2017-05-09T00:27:05Z
    date available2017-05-09T00:27:05Z
    date copyrightFebruary, 2008
    date issued2008
    identifier issn0148-0731
    identifier otherJBENDY-26789#011010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/137514
    description abstractIt is well known that atherosclerosis occurs at very specific locations throughout the human vasculature, such as arterial bifurcations and bends, all of which are subjected to low wall shear stress. A key player in the pathology of atherosclerosis is the endothelium, controlling the passage of material to and from the artery wall. Endothelial dysfunction refers to the condition where the normal regulation of processes by the endothelium is diminished. In this paper, the blood flow and transport of the low diffusion coefficient species adenosine triphosphate (ATP) are investigated in a variety of arterial geometries: a bifurcation with varying inner angle, and an artery bend. A mathematical model of endothelial calcium and endothelial nitric oxide synthase cellular dynamics is used to investigate spatial variations in the physiology of the endothelium. This model allows assessment of regions of the artery wall deficient in nitric oxide (NO). The models here aim to determine whether 3D flow fields are important in determining ATP concentration and endothelial function. For ATP transport, the effects of a coronary and carotid wave form on mass transport is investigated for low Womersley number. For the carotid, the Womersley number is then increased to determine whether this is an important factor. The results show that regions of low wall shear stress correspond with regions of impaired endothetial nitric oxide synthase signaling, therefore reduced availability of NO. However, experimental work is required to determine if this level is significant. The results also suggest that bifurcation angle is an important factor and acute angle bifurcations are more susceptible to disease than large angle bifurcations. It has been evidenced that complex 3D flow fields play an important role in determining signaling within endothelial cells. Furthermore, the distribution of ATP in blood is highly dependent on secondary flow features. The models here use ATP concentration simulated under steady conditions. This has been evidenced to reproduce essential features of time-averaged ATP concentration over a cardiac cycle for small Womersley numbers. However, when the Womersley number is increased, some differences are observed. Transient variations are overall insignificant, suggesting that spatial variation is more important than temporal. It has been determined that acute angle bifurcations are potentially more susceptible to atherogenesis and steady-state ATP transport reproduces essential features of time-averaged pulsatile transport for small Womersley number. Larger Womersley numbers appear to be an important factor in time-dependent mass transfer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEndothelial Nitric Oxide Synthase and Calcium Production in Arterial Geometries: An Integrated Fluid Mechanics/Cell Model
    typeJournal Paper
    journal volume130
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2838026
    journal fristpage11010
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsBifurcation
    keywordsExterior walls
    keywordsEndothelial cells AND Shear (Mechanics)
    treeJournal of Biomechanical Engineering:;2008:;volume( 130 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian