| description abstract | The existence of arbitrarily oriented multiple cracks is a common problem in brittle materials. Some of these materials, such as ceramics, are used in mechanical and aerospace structures that suffer from aging. Because of that, such structures have shown some signs of sudden partial or total failure. The interaction and coalescence of multiple cracks may significantly affect the designed lives of aging structures. Knowledge of the growth behavior of interacting cracks is still limited. In this paper, a novel submodeling meshing algorithm is used to construct different cases of arbitrarily oriented identical surface cracks in a plate subjected to remote tension. These cases are solved using finite element analysis (FEA) and covered a wide range of crack geometries. The stress intensity factors (SIFs) and the energy release rates (G) for these cracks are calculated as a function of their relative orientation and the position along the interaction crack-front. In this paper, the studied ratio of crack depth to plate thickness, a/t, and to crack length, a/c, are kept at 0.2 and 0.3, respectively. Where possible, a comparison of the 3-D results with 2-D ones is also considered. | |