Show simple item record

contributor authorT. M. Atanackovic
date accessioned2017-05-09T00:03:56Z
date available2017-05-09T00:03:56Z
date copyrightNovember, 2001
date issued2001
identifier issn0021-8936
identifier otherJAMCAV-926184#860_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124636
description abstractBy using Pontryagin’s maximum principle we determine the shape of the lightest rotating rod, stable against buckling. It is shown that the cross-sectional area function is determined from the solution of a nonlinear boundary value problem. Three variational principles for this boundary value problem are formulated and a first integral is constructed. The optimal shape of a rod is determined by numerical integration.
publisherThe American Society of Mechanical Engineers (ASME)
titleOn the Optimal Shape of a Rotating Rod
typeJournal Paper
journal volume68
journal issue6
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.1409938
journal fristpage860
journal lastpage864
identifier eissn1528-9036
keywordsVariational principles
keywordsBoundary-value problems
keywordsShapes
keywordsOptimization
keywordsEquations AND Buckling
treeJournal of Applied Mechanics:;2001:;volume( 068 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record