YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Optimal Shape of a Rotating Rod

    Source: Journal of Applied Mechanics:;2001:;volume( 068 ):;issue: 006::page 860
    Author:
    T. M. Atanackovic
    DOI: 10.1115/1.1409938
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: By using Pontryagin’s maximum principle we determine the shape of the lightest rotating rod, stable against buckling. It is shown that the cross-sectional area function is determined from the solution of a nonlinear boundary value problem. Three variational principles for this boundary value problem are formulated and a first integral is constructed. The optimal shape of a rod is determined by numerical integration.
    keyword(s): Variational principles , Boundary-value problems , Shapes , Optimization , Equations AND Buckling ,
    • Download: (111.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Optimal Shape of a Rotating Rod

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/124636
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorT. M. Atanackovic
    date accessioned2017-05-09T00:03:56Z
    date available2017-05-09T00:03:56Z
    date copyrightNovember, 2001
    date issued2001
    identifier issn0021-8936
    identifier otherJAMCAV-926184#860_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/124636
    description abstractBy using Pontryagin’s maximum principle we determine the shape of the lightest rotating rod, stable against buckling. It is shown that the cross-sectional area function is determined from the solution of a nonlinear boundary value problem. Three variational principles for this boundary value problem are formulated and a first integral is constructed. The optimal shape of a rod is determined by numerical integration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Optimal Shape of a Rotating Rod
    typeJournal Paper
    journal volume68
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.1409938
    journal fristpage860
    journal lastpage864
    identifier eissn1528-9036
    keywordsVariational principles
    keywordsBoundary-value problems
    keywordsShapes
    keywordsOptimization
    keywordsEquations AND Buckling
    treeJournal of Applied Mechanics:;2001:;volume( 068 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian